

Incorporating Customer-Sited Solar PV in Electric Power Forecasts

Arthur Maniaci

Supervisor, Load Forecasting & Energy Efficiency New York Independent System Operator

NYISO Environmental Advisory Council October 31, 2014
Albany, NY

Overview

1. New York Sun Initiative

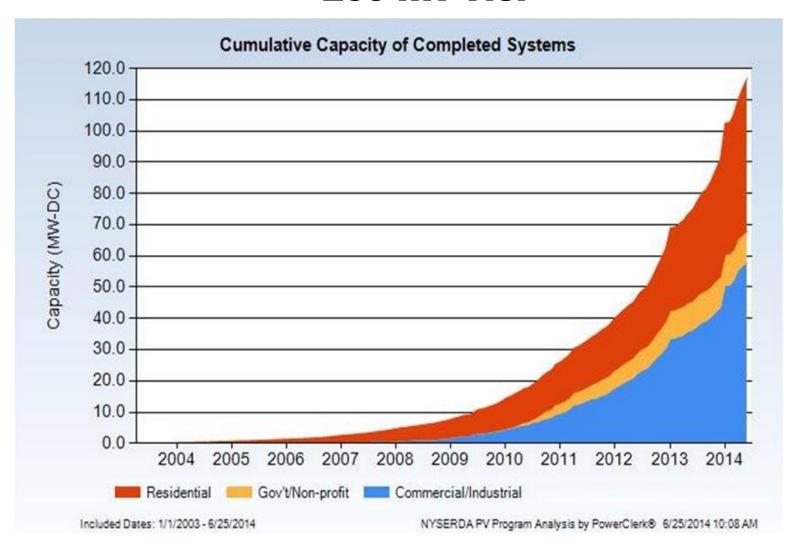
- a. Budget & Declining Block Incentives
- b. MW Goals
- c. Current Installed Capacity
- d. Installation Issues

2. Long Term Forecast

- a. Energy Impacts & Summer Peak Impacts
- b. Hourly Impacts & Installed Reserve Margin

3. Real-Time Forecast

- a. Data Requirements
- **b.** Forecasting Methods



NY Sun Initiative

- Current goal is to install 3,000 MW of customersited solar PV by 2023.
- Expected commitment from NY of nearly \$1 billion dollars.
- Incentive payments to decrease over time, so as to induce a market transformation
- Current installed capacity is about 245 MW statewide and has seen high growth rates since 2011
- Federal Solar Investment Tax Credit will expire in 2016; impact on NY installations not known.
- Interconnection standards and DC-AC inverter standards are emerging issues.

Residential Solar PV Installed Capacity 200 kW Tier

Current Installed Capacity of Customer-Sited Solar PV MW(DC) (as of August 2014)

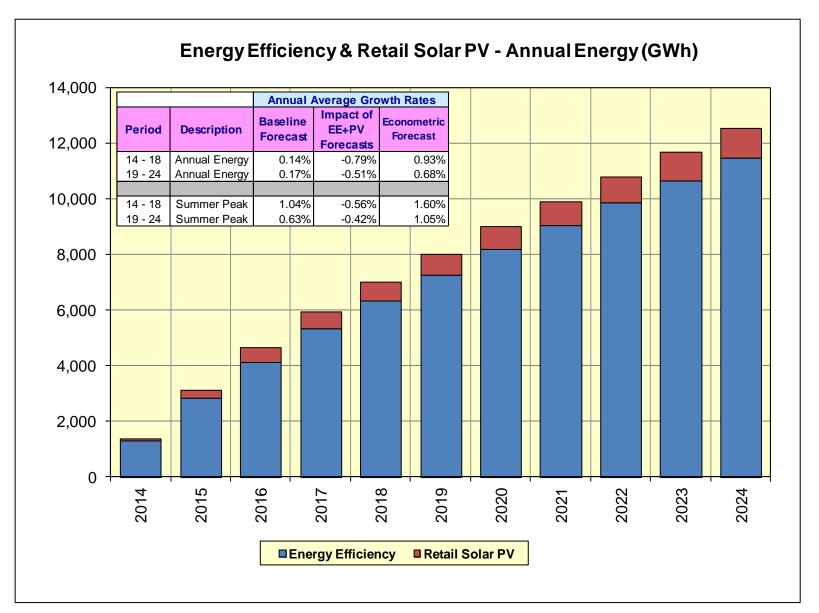
(a)	(b)	(c)	(d)	(e)=(d/c)	(f)=(d _i / Σ d _i)	(g)	(h)=(d/g)
Zone	Metro Area	Number of Solar PV Systems	Total MW, DC	Avg kW, DC	Pct of Solar PV MW in Zone	2013 Peak MW	Pct of SPV MW as Share of 2013
Α	Buffalo	839	15.4	18.4	6.7%	2,549	0.6%
В	Rochester	539	4.8	8.8	2.1%	2,030	0.2%
С	Syracuse	701	16.4	23.5	7.1%	2,921	0.6%
D	Plattsburg	88	0.9	10.4	0.4%	819	0.1%
E	Utica	1,259	7.7	6.2	3.4%	1,540	0.5%
F	Albany	2,173	43.2	19.9	18.7%	2,392	1.8%
G	Poughkeepsie	2,634	30.2	11.5	13.1%	2,358	1.3%
Н	Westchester	322	4.3	13.4	1.9%	721	0.6%
1	Westchester	549	7.3	13.3	3.2%	1,517	0.5%
J	New York City	1,345	31.2	23.2	13.5%	11,456	0.3%
K	Long Island	8,687	68.9	7.9	29.9%	5,653	1.2%
	Total	19,136	230.3	12.0	100.0%	33,956	0.7%

⁽¹⁾ Data includes NYSERDA customer-sited programs for small SPV (<= 200 kW), large SPV (>200 kW) and LIPA's customer-sited programs.

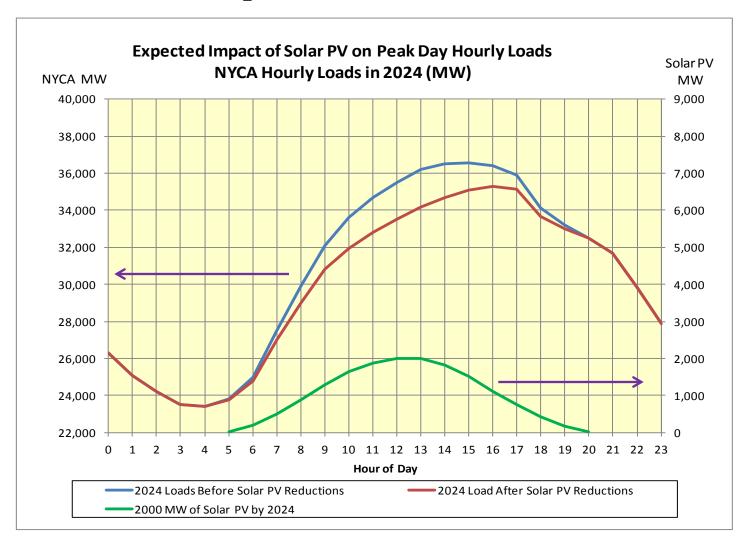
⁽²⁾ Solar PV capacity is reported in DC power. Inverter losses to convert DC to AC are not included.

Cumulative Capacity of Distributed Energy Resources (DER) MW (as of August 2014)

Zone	Anaerobic Digesters	Combined Heat & Pow er	Total MW
А	2.9	5.9	8.8
В	0.7	2.2	2.9
С	2.2	30.8	33.0
D	0.1	0.0	0.1
E	0.9	9.8	10.7
F	0.3	7.5	7.8
G	0.0	0.3	0.3
Н	0.0	0.4	0.4
	0.0	0.7	0.7
J	0.0	63.5	63.5
K	0.0	3.3	3.3
Total	7.1	124.4	131.5


Data from NYSERDA

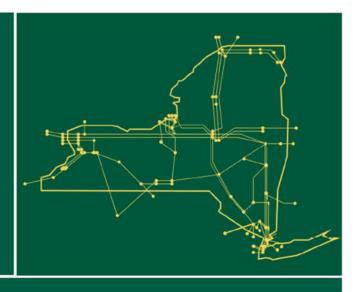
Long Term Forecast


- Current NYISO forecast recognizes substantial increase in Solar PV capacity over the next 10 years.
 - Must account for inverter losses, sub-optimal orientations, shading, decrease in irradiance by 4 pm.
- 2014 Gold Book included 2,000 MW DC of new installed solar PV capacity by 2024
 - Net energy impact of solar PV is small, compared to current projections of energy efficiency (1,070 GWh as compared to 11,450 GWh).
 - Current estimate of impact by 2024 is 360 MW reduction of peak demand.
- Future projections will be updated based upon observed rate of increase in capacity in overall installed capacity factors.

How Solar PV Forecast Will Impact A Load-Shape In The Year 2024

Short Term Forecast

- Data requirements for fitting a Solar PV model to historic loads
 - Historic time series of installed capacity
 - Concurrent time series of solar irradiance (watts / sq meter)
 - Either: Site-specific technical specifications of location, collector geometry, inverter, power conversion curves
 - Or: Other geographic estimate of aggregate hourly PV output
- Short-term forecast requirements:
 - Solar irradiance & cloud cover, 7 days ahead at hourly intervals
 - Rolling projection of capacity growth one to two years ahead on a daily basis to capture near-term capacity expansion.



Current Forecasting Activities

- Expanding number of weather stations from 17 to 25
- Currently receiving forecasts of hourly irradiance, 7 days ahead
- Working with other ISOs, weather and forecasting consultants on model building and forecasting methods
- Consulting with NYSERDA to identify potential applications of their site-specific data for NYISO forecasting activities – both Solar PV and Combined Heat & Power

The New York Independent System Operator (NYISO) is a not-for-profit corporation responsible for operating the state's bulk electricity grid, administering New York's competitive wholesale electricity markets, conducting comprehensive long-term planning for the state's electric power system, and advancing the technological infrastructure of the electric system serving the Empire State.

www.nyiso.com